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Gapminder World, at www.gapminder.org, displays life expectancy (henceforth LEX) for all 

countries since 1800. Many of the observations are, obviously, based on rough guesstimates 

for the most likely long-term level. This means that the data for LEX is missing for most 

major disasters (such as wars, famines, epidemics, genocides and natural catastrophes). If data 

is missing the Gapminder World tool will automatically interpolate between the closest 

available years. This gives the false impression that mortality was unaffected during such 

occasions. 

 

The purpose of the data is to display the broad global patterns of development, and not as a tool 

for statistical analysis. Hence, we would argue, that it would be better to try to guesstimate the 

LEX during these disasters, even a rough guesstimate would be better than implying that 

nothing happened at all. In most cases we could never hope to find a proper estimate for the 

“real” LEX, but we could at least give some impression on the magnitude of the disaster. Here 

we will describe the general principles we use to guesstimate the impact of such disasters from 

the limited data available. The data itself will be available at 

http://www.gapminder.org/data/documentation/gd004/ 

 

We will first look at how crude death rates relates to life expectancy (section 1), which leads to 

some simple “models”, described in section 2 to 5. We go into details for a number of “disaster 

types” in section 6 to 9 (wars, the Spanish flu, famines, epidemics and mortality due to general 

underdevelopment).     

 

 

1. The relationship between crude death rates and life expectancy 

 

In the typical case we have figures for the total deaths attributed to a certain disaster, the 

population at the onset of the disaster, and the duration of the disaster. From that we can get a 

“crude excess death rate per year”, i.e. excess deaths / (population at onset * duration in years). 

We will only attempt to do these guesstimate where we have some kind of figure for the 

“baseline LEX”, which will often also be a guesstimate. We usually also have some qualitative 

information on the type of disaster, e.g. how severe the situation was in a particular year. 

 

Our main data input will be either a crude death rate (i.e. number of dead per year per 1000 

people, henceforth CDR), or excess crude death rate (i.e. the crude death rate during the disaster 

in excess of the normal death rate). How could we transform this into life expectancy? The 

relationship between LEX and crude death rates depends on many factors, such as the age 

distribution of the population and the age distribution of the dead. However, a log-linear 

relationship seems to represent a fair approximation, as can be seen in figure 1 below. Hence, 

our starting point will be to assume the following relationship (the values for alfa and beta will 

be discussed in due time): 

 

𝐿𝐸𝑋 = 𝛼 ∗ 𝑒𝑥𝑝(−𝛽 ∗ 𝐶𝐷𝑅) 
 

We have no real theoretical basis to assume this, but it fits the actual data relatively well. We 

also made some crude simulations with a model life table, which also fits this model relatively 

well. A log-linear relationship also has the advantage that LEX never takes on negative values. 

 

Figure 1 below display the life expectancy (on a log-scale) in 1953, plotted against the CDR. 

Each bubble is a country (the size of the bubbles is proportionate to the population of that 

http://www.gapminder.org/
http://www.gapminder.org/data/documentation/gd004/
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country).  The color of the bubbles displays the median age in the countries (as shown by the 

legend).  We choose 1953 because the spread of LEX was the widest for this year.  

 

 
Figure 1. Source: Life expectancy from Gapminder (before the adjustments discussed here), 

and the CDRs are from the World Bank.  

 

An “eye-ball regression” on this figure implies that the relationship is, roughly, like the yellow 

line, or: 

𝐿𝐸𝑋 = 85 ∗ 𝑒𝑥𝑝(−0,0384 ∗ 𝐶𝐷𝑅) 
  

If we try to compare only countries with a “young” population, i.e. only the blue bubbles, we 

get a relationship that looks more like the grey line, or roughly as: 

 

𝐿𝐸𝑋 = 75 ∗ 𝑒𝑥𝑝(−0,0285 ∗ 𝐶𝐷𝑅) 
 

The relationship holds even if we look at other years, or add more extreme observations for 

which we have data (e.g. life expectancy for Sweden in the 18th century), or 19th century Berar 

(India). However, it is also apparent that the predicted values often are wrong by at least five 

years, and sometimes wrong by more than 10 years. Hence, it would be too crude to just use 

the model above, even for our purposes. But how well do the movements in CDR fit the 

movements in LEX? 
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Figure 2. Finland, Life expectancy. Blue lines are actual life expectancy (sources are mainly 

Human Mortality Database and Turpeinen (1979). Before 1875 only 10-year averages are 

available. The green lines are based on the CDR-model, with the coefficients adjusted so they 

match the LEX as much as possible. The thicker green line is the 10-year averages, to allow 

comparisons with the actual LEX. 

 

Above we compare our model for Finland (with the alfas and betas adjusted to fit the actual 

LEX) with actual LEX. After 1875 we have LEX for each year, and we see that the model 

captures the yearly movements fairly well, but we also see that the level trend to drift away over 

time. Other countries also show similarity in the short term movement, but for some countries 

the drift is even larger. Hence, to use CDR movements alone over any longer periods would be 

too crude even for our purposes, but we do think we can use these movements to illustrate short 

term movements, as long as we have some LEX benchmarks not too distant in time.   

 

Collecting data during disasters is of course quite challenging, especially in low income settings 

where the statistical infrastructure is underdeveloped even in normal times. However, a number 

of data collection tools have come into use during the last couple of decades that allows us to 

make some assessment of the excess mortality during crisis (the Geneva declaration). 

 

In some disasters a substantial number of people die abroad. This includes soldiers on foreign 

fronts, but also persons forcefully removed to concentration camps or similar. We are not sure 

what the “correct” principle is, but our principle has been to count their deaths towards the 

home population.  

 

With these initial notes we can move on to describe our simplified models in more detail. We 

begin with our “main model”, followed with some alternative models. 
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2. Our main method: excess CDRs and baseline LEX 

 

So what we will do in most cases is to use excess crude rates to guesstimate short term deviation 

from a baseline life expectancy. In the typical case we proceed as follows: 

 

 We collect data on excess deaths, often from Wikipedia (crosschecked with other 

sources when we felt it was necessary) 

 

 We divide this (times 1000) with the population (from Gapminder) the year before the 

onset of the disaster. This gives us an excess CDR. 

 

 We divide this with the duration in years of the incident. This gives us the excess CDR 

per year. 

 

 We identify a baseline life expectancy, typically the existing Gapminder figure for the 

year before the incident (we have not been entirely consistent here, sometimes we use a 

life expectancy for the same year, but this choice should have a quite modest effect) 

 

 We estimate a model average life expectancy for the whole period of the incident, by 

using the formula below: 

 
𝐿𝐸𝑋𝑚𝑜𝑑𝑒𝑙 = 𝐿𝐸𝑋𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 ∗ 𝑒𝑥𝑝(−𝛽 ∗ 𝐶𝐷𝑅𝑒𝑥𝑐𝑒𝑠𝑠 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟) 

 

 The choice of the beta is based on qualitative information on the characteristics of the 

disaster. Exactly how we choose the betas will be explained further on, but we typically 

choose 2%, 2.5% or 3%. Sometimes we also adjust the model so that it fits existing life 

expectancy estimates (if such exists for other years than the baseline).  

 

 For multiple-year disasters we use qualitative information (or, if available, quantitative 

information) to guesstimate which years were worse and which were better. We rely 

heavily on Wikipedia and a number of historical atlases, but in some cases we utilize 

more specialized sources. We make sure that the average life expectancy for the disaster 

will match the average implied by our model.  

 

 

3. Alternative method: Actual CDRs together with benchmark LEXs 

 

Sometimes we have the actual CDR for several years (excess CDR is the actual CDR minus 

“baseline CDR”). We use those CDRs if we also have a number of benchmark LEXs. We 

calculate a model LEX from the following: 

 

𝐿𝐸𝑋𝑚𝑜𝑑𝑒𝑙 = 𝛼 ∗ 𝑒𝑥𝑝(−𝛽 ∗ 𝐶𝐷𝑅) 
 

We choose the alfa and beta so that the model LEX match the available LEXs as well as possible 

(we typically do that with simple visual inspection). The match will never be perfect for all the 

available LEX figures. However, if we believe the available LEXs is of good quality we 

multiply the model-LEX with a year-specific adjustment factor, so that the match becomes 

perfect. For each benchmark year we find the adjustment factor that makes the match perfect 

for that year. For the years in-between we interpolate the adjustment factors. We have only 

done this when the variation in the adjustment factor is relatively small.  
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4. Another alternative method: Age specific mortality, model life tables, together with 

benchmark LEXs   

 

Sometimes we have age-specific mortality. Most often this is infant mortality. From this we 

calculate a model life expectancy by fitting a model life table to this data. The model life table 

we use is based on “UN general, female”, as extended by the World Population prospects 2010.1 

The resulting life expectancy tends to “drift” even more than the CDR model, i.e. the level 

might fit the actual life expectancy well for some years, but deviate more and more over time. 

Again, we only use this for short term movements, so we use an adjustment factor to link the 

model with benchmark LEX. 

 

 

5. The choice of the “beta” in the CDR model 

 

In our model the “beta” described the relationship between CDR and log life expectancy. The 

relationship between crude death rates and LEX obviously depends on many factors, such as 

the age distribution of the population and the age distribution of the dead. We will not be able 

to take the age distribution of the population into account. However, we will make some 

assumptions on the age profile of mortality for a number of “disaster types”. For example, direct 

military deaths mostly affect young adult men, whereas the effect of “normal 

underdevelopment”, as reflected in the long-term trends in life expectancy, take a heavier toll 

amongst young children. Hence, it would be reasonable to use a lower beta for wars than the 

betas we found in the cross-country comparison in figure 1 (since the cross-country comparison 

is likely to mostly reflect the impact of under-development).   

 

We will use three default values for the beta in the log-linear model above:  

 War 2% 

 Spanish flu, most famines, measles in new environment (e.g. Fiji 1875), small pox: 2,5% 

  “Normal” underdevelopment: 3% 

 

In retrospect we feel that it would have been better to use the same default coefficient for all 

disasters (probably 3%), since the age profile of death differs much more within each type of 

disaster than between them. The choice of coefficient probably has much less importance than 

the general uncertainty with the model. Anyways, since we have used these coefficients (with 

some variations) we should motivate the choices. 

 

First, we could look at the coefficients implied by the observations for which we actually have 

both CDR and LEX. From these we can calculate a beta in this way: 

𝛽 =
𝑙𝑛(𝑒𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒) − 𝑙𝑛(𝑒𝑐𝑟𝑖𝑠𝑖𝑠)

𝐶𝐷𝑅𝑝𝑙𝑢𝑠
 

 

Let us now look separately at a number of disaster “types”. We begin with wars. 

 

 

 

                                                           
1 The table has been extended by me in the following ways: extrapolated (manually) down to LEX 10; 
interpolated to steps of 0.1 years of LEX; interpolated the survival chances to yearly ages, assuming constant 
survival chances within each age bracket. 
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6. The “beta” for wars 

 

Deaths attributed to wars can be divided into military deaths and civilian deaths. Both military 

and civilian deaths can be divided into direct deaths and indirect deaths. Direct deaths include 

deaths by weapons or use of force. Indirect deaths are the deaths that have been attributed to 

the indirect effects of war, such as the collapse of health care, destruction of infrastructure, 

famines, epidemics, dislocation and so forth. Military indirect deaths are, for example, the 

soldiers that die from diseases spread due to the war. 

 

The share of indirect deaths in the total deaths varies substantially. In a selection of recent 

conflicts the share indirect deaths range from 0% indirect deaths for Kosovo 1998-99, to 94% 

for Sierra Leone 1991-2002 (the Geneva declaration, calculated from table 2.3). 

 

We can also get a sense of the share direct deaths by looking at male and female LEX separately. 

We do that for France below, with data from Human Mortality Database. The World War 1 

stands out as a disaster where the direct effect seems to dominate.   

 

 
Figure 3. French Life expectancy, Human Mortality Database 

 

 

Sources on mortality do vary with respect to what they include. “Official statistics often exclude 

military deaths that occur abroad” (Jdanov et al). This might seriously overestimate the life 

expectancy during a war. The Human Mortality Database has, to my understanding, made the 

effort to include all such deaths. 

 

On the other hand, some sources on war deaths only include the direct military battle deaths, 

others include all direct deaths (civilian and military), whereas other include all excess mortality 
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attributed to the disasters, or all mortality, whatever the cause, in excess of the baseline 

mortality. For example, some sources include deaths from the Spanish Flu in the World War 1 

mortality, whereas others exclude it.  

 

Hence, it is important to try to understand what is included in any mortality figure, to avoid 

double counting or undercounting. However, we do not need to know how much of the excess 

mortality can be attributed to a war; we are mainly interested in the size of the mortality. 

However, the causes of mortality can be interesting because they might say something about 

the age-distribution of deaths. Direct battle deaths would overwhelmingly affect the young adult 

age-group, civilian direct deaths (e.g. due to “aerial bombardments”) probably affect all age-

groups more equally, whereas starvation and epidemics might take a higher share amongst the 

children. 

 

The history of a country often makes it clear how the country was involved in a specific war. 

The involvement can take a range of different forms, with different mortality effects. We will 

use this information when we try to “distribute” the deaths for each year of a specific war (we 

often only have information on the deaths for the duration of a war, not the year-by-year deaths 

toll). The types of war involvement include: 

 

 Military forces in direct battle overseas. Examples include the US involvement in World 

War 1. Direct battle deaths might be substantial, but the indirect effects are likely to be 

minimal (especially if the war is far away). Hence, in these cases it will not be a problem if 

the sources we use fail to include indirect deaths. We will generally assume that an army 

that are losing ground have higher mortality than an advancing army. 

  

 Ground-battles in the territory of the country. In this case there might be substantial civilian 

deaths, but size of this varies substantially, depending on the characteristics of the war. This 

can depend on a number of factors, such as where the battles are fought, the length of 

fighting, the degree of disruption, the behavior of the combatants and the pre-conflict level 

of health care, infrastructure and governance. According to the GenevaDeclaration.org:   

“Three main factors explain the differences in proportion between direct and indirect 

conflict deaths: the quality of pre-existing health care systems and patterns of disease; the 

speed and extent of the humanitarian response; and the intensity and duration of battle.” 

 

 Aerial bombardment. Civilian areas are sometimes directly affected by bombardment, even 

when the frontline is far away from the country. This was very common during the World 

War 2. I have not seen any information on the age distribution of mortality, but a guess is 

that all age groups are affected rather indiscriminately (although children sometimes were 

evacuated to the country side). 

 

 Guerilla warfare. This might cause both direct and indirect deaths 

 

 Occupation. The effect of occupation seems to vary substantially, very much depending to 

the occupational policies and the extent of resistance. The cases of Netherlands and France 

(in the figure below) indicate that life expectancy was somewhat depressed during the 

occupation, but that the main mortality peaks occurred in the years of occupation and 

liberation.   

 

 Famines and epidemics. Sometimes some specific indirect effects of a war are noted, e.g. 

the winter famines in Netherlands or in Leningrad. Excess mortality figures specifically 
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attributed to these disasters are sometimes provided. Some of these indirect sources of 

mortality are probably taking a higher toll on children than the battle deaths. 

 

 Genocide and other “democides”. The number of people killed in genocides could be large 

enough to affect the life expectancy. They are often done in connection to a war. Examples 

include the Holocaust and the Rwandan genocides. In most genocide all age-groups are 

targeted. 

 

 Being close to wars. Sometimes the effects of war can spill over to neighboring countries. 

Trade can be disrupted, with serious effects on the population. Epidemics can spread from 

the war zone (the Spanish flu could be considered a case in point). Military mobilization 

can spread diseases geographically. One example seems to be Denmark during World War 

1. The country was neutral and stayed out of battle, but nevertheless displayed a mortality 

peak during the war. The Wikipedia article claims that this is due to the strong impact of 

the trade disruption caused by the war. 

 

 

   
Figure 4. Life expectancy for Netherlands and France, during the World War 2. Source Human 

Mortality Database (accessed 2009). 

 

Figure 4 illustrates the life expectancy during the course of a war for France and Netherlands. 

We marked some of the key incidents for each country. 

 

Let us now look at wars for countries for which we have data. We have listed our available 

cases below, together with the calculated “beta”. The excess mortality figures are usually taken 

from Wikipedia (cross-checked with other sources, such as war atlases). The figures supposedly 

include both direct and indirect deaths, although some indirect civilian deaths might sometimes 

have been excluded. The Spanish flu is not included in the world war 1 deaths. 
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  data note excess 

cdr per 

year 

-beta 

(average) 

Sweden ww2 non participant 0,02 -119,9 

Australia ww2 overseas 1,45 -0,7 

Canada ww2 overseas 0,67 -2,4 

United States ww2 overseas 0,80 -2,8 

Denmark ww2 little fighting 0,17 -3,2 

Spain, civil war   8,53 1,1 

Netherlands ww2 seem to be more inclusive causality figures, 

e.g. a major famine is included 

6,90 1,1 

Belgium ww2  2,10 1,4 

Finland, ww2  5,24 1,6 

Ukraine ww2  41,42 1,6 

UK ww2 colonials included in military deaths 1,89 1,7 

Italy ww2  2,00 1,7 

Norway ww2  0,68 2,5 

Luxembourg ww2 data unclear 3,39 2,6 

France ww2   2,64 4,2 

UK ww1  5,74 2,1 

France ww1  9,46 2,7 

Italy ww1  7,57 3,2 

average all positive   2,1 

average all after ww1   1,9 

Table 1. Calculated betas for wars 

 

The first couple of betas are in fact negative, meaning that the average life expectancy during 

the war increased from its pre-war level. These are all countries that had a low excess mortality, 

and they are either non-participants, countries that only fought “overseas”, or countries where 

limited fighting occurred. 

 

The betas for the rest of the countries varies substantially, non-surprisingly, from 1.1 to 4.2. 

The average is around 2, which we will take as our guideline for wars. This is the lowest 

coefficient we use, which make sense given the supposedly low share of child death in direct 

mortality.  

 

 

7. The “beta” for the Spanish flu 

 

The outbreak of the Spanish Flu in 1918 is treated as a special disaster category in our data 

since it affected so many countries. The age profile of mortality of the Flu was quite particular 

since it took its heaviest toll amongst young adults and young children (Taubenberger & 

Morens, 2006), as illustrated in figure 5 below.  
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Figure 5: example of age profile of mortality in the Spanish Flu. Source: copied from 

Taubenberger & Morens, 2006, through Wikipedia.  

 

This age-profile implies a higher beta than for battle deaths (due to the effects on children) but, 

probably, a lower beta than for normal underdevelopment, which should be even more 

concentrated amongst children. We calculated betas for the countries for which we had both 

life expectancy (generally from the Human Mortality Database) and excess CDR from the 

Spanish Flu (from the various sources listed later). The betas are illustrated in figure 6 below. 

 

 
Figure 6. Calculated betas for 1918. Sources: see text 

 

War was ongoing in several countries, which of course adds uncertainty. The biggest problem 

is probably Finland, since they were not directly in the war before 1918, and the Finnish civil 

war broke out in 1918. This might explain the high beta in Finland. We are not certain about 
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the data quality in Taiwan (taken from the data compilation of Riley, rather than the Human 

Mortality database). We have no explanation for why the impact in Denmark was so low.  

 

If we exclude Finland from the data we get an average beta of 2.39%. If we also exclude Taiwan 

and Denmark we get an average of 2.71%. It also seems that 2.5% is a “typical value”. We 

settle for this rounded figure of 2.5%, which imply a higher beta than for wars, but a lower beta 

than for normal underdevelopment.  

 

There are several studies that offer excess mortality figures for the Spanish Flu. We combined 

them, in the following order of preference: Ansart etal (2009) offer data for European countries, 

and they have the most detailed methodology. Then we use Murray etal (2006) and Johnsson 

& Mueller (2002). The first two sources agree quite well. After that we use a selection of ad-

hoc sources, including accounts that a country totally escaped the Flu (which did happen in a 

few cases) and crude death rates. For the remaining countries we extrapolated from regional 

averages or from neighbors. 

 

 

8. The “beta” for famines 

 

The impact of a famine depends quite a lot on circumstances. Many famines take their heaviest 

tolls on the youngest and the oldest in the population. For example, the excess age-specific 

death rate in the Irish Potatoe famine was, according to estimate of Boyle & O’Grada, as in 

table X below.  

 

 male 

% 

female % 

0-4 years 29 28 

5-9 years 20 20 

10-59 

years 

8 7 

60+ years 31 22 

 

Table 2: Exess mortality during the Irish famine 1845 

 

However, the direct death of starvation in a famine is often of relative minor importance 

compared to the indirect effects caused by the epidemics and turbulence caused by the famine 

(just as direct battle deaths are often a minor part of deaths in war). Hence, the age profile of 

mortality during famines is likely to vary substantially, depending on what indirect effects the 

famine triggers.  

 

We had relative few direct estimates of life expectancy during major famines, and there were 

large uncertainties with the data in each of these cases. We have tabulated the information we 

have in the table below. The estimates for excess mortality for the Chinese famine during the 

Great Leap Forward varied with more than a factor two. For the Irish famine we were uncertain 

about the appropriate length of the disaster. We include beta estimates during all these 

assumptions. 
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 Ukraine 1933 Great leap, 

low dead 

estimate 

Great leap, 

high dead 

estimate 

Irish 

famine, 

long 

duration 

Irish 

famine, 

short 

duration 

lex start 37,0 50,2 50,2 38,3 38,3 

lex average 9,1 37,2 37,2 20,6 20,6 

dead 2 600 000 20 000 000 43 000 000 985 000 985 000 

population 

start 

34 000 000 628 000 000 628 000 000 7 555 000 7 555 000 

excess cdr 76 32 68 130 130 

Duration in 

years 

1 4 4 6 4 

excess cdr/year 76 8 17 22 33 

beta 1,84 3,77 1,75 2,87 1,91 

source LEX Vallin etal 

(2002) 

Luo, Sheng. 

1988. 

Luo, Sheng. 

1988. 

Boyle & 

Ograda 

Boyle & 

Ograda 

Table 3: Calculated “betas” for three famines 

 

As expected, the estimated betas vary substantially; between 1.75% and 3.77%. We choose, 

rather arbitrarily, a beta of 2.5, i.e. the same as for the Spanish Flu. 

 

 

9. The “beta” for other epidemics 

 

We have information for a large number of major epidemics, not connected to wars or famines. 

The age profile varies between diseases and contexts. For example, Boyle & Ograda, note that 

small pox often have greater impact on the young, whereas cholera often had greater impact on 

the old. However, we decided that we had too little information to set up rules for specific 

diseases. We generally choose to use a beta of 2.5 for epidemics, unless we had specific reasons 

to suspect a deviating age profile. 

 

 

10. The “beta” for normal underdevelopment 

 

The long term differences in life expectancy could be seen as mostly reflecting the extent of 

general underdevelopment of the country. Underdevelopment generally takes it heaviest toll on 

young children. Hence, we could assume that the beta for “general underdevelopment” is in the 

high end of possible beta values. 

 

We illustrated the coefficient between (log) life expectancy and CDR in figure 1 above. We 

found that the general correlation implied a beta of 3.84% (the yellow line in figure 1) and a 

correlation between countries with roughly the same age structure imply a beta of about 2.85% 

(the grey line). As a compromise we use a beta of 3% for cases that are deemed to most resemble 

general underdevelopment. 
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